
Genetically Breeding Populations of Computer
Programs to Solve Problems

Shresth Joshi, Priya Tomar, Dharmendra Kelde

Department of Information Technology
Shri Dadaji Institute of Technology and Science, Khandwa

Abstract:- Many seemingly different problems in artificial intelligence,
symbolic processing, and machine learning can be viewed as requiring
discovery of a computer program that produces some desired output for
particular inputs. When viewed in this way, the process of solving these
problems becomes equivalent to searching a space of possible computer
programs for a most fit individual computer program. The new “genetic
programming” paradigm described herein provides a way to search for
this most fit individual computer program. In this new “genetic
programming” paradigm, populations of computer programs are
genetically bred using the Darwinian principle of survival of the fittest
and using a genetic crossover (recombination) operator appropriate for
genetically mating computer programs. In this paper, the process of
formulating and solving problems using this new paradigm is illustrated
using examples from various areas.
Examples come from the areas of machine learning of a function;
planning; sequence induction; symbolic function identification
(including symbolic regression, empirical discovery, "data to function"
symbolic integration, "data to function" symbolic differentiation);
solving equations, including differential equations, integral equations,
and functional equations); concept formation; automatic programming;
pattern recognition, time-optimal control; playing differential
pursuerevader games; neural network design; and finding a game-
playing strategy for a discrete game in extensive form.
The purpose of this paper is to show how to reformulate these seemingly
different problems into a common form (i.e. a problem requiring
discovery of a computer program) and, then, to describe a single, unified
approach for solving problems formulated in this common form.

1.INTRODUCTION:
Genetic programming is a technique pioneered by John Koza
which enables computers to solve problems without being
explicitly programmed. It works by using John Holland's
genetic algorithms to automatically generate computer
programs. Genetic algorithms were devised by Holland as a
way of harnessing the power of natural evolution for use
within computers. Natural evolution has seen the
development of complex organisms (e.g. plants and animals)
from simpler single celled life forms. Holland's GAs are
simple models of the essentials of natural evolution and
inheritance.
The growth of plants and animals from seeds or eggs is
primarily controlled by the genes they inherited from their
parents. The genes are stored on one or more strands of DNA.
In asexual reproduction the DNA is a copy of the parent's
DNA, possibly with some random changes, known as
mutations. In sexual reproduction, DNA from both parents is
inherited by the new individual. Often about half of each
parent's DNA is copied to the child where it joins with DNA
copied from the other parent. The child's DNA is usually
di_erent from that in either parent.
Natural Evolution arises as only the fittest individuals survive
to reproduce and so pass on their DNA to subsequent
generations. That is DNA which produces fitter individuals is

likely to increase in proportion in the population. As the
DNA within the population changes, the species as a whole
changes, i.e. it evolves as a result of selective survival of the
individuals of which it is composed.
Genetic algorithms contain a population of trial solutions to a
problem, typically each individual in the population is
modeled by a string representing its DNA. This population is
“evolved” by repeatedly selecting the “fitter” solutions and
producing new solution from them. The new solutions
replacing existing solutions in the population. New
individuals are created either asexually (i.e. copying the
string) or sexually (i.e. creating a new string from parts of
two parent strings).In genetic programming the individuals in
the population are computer programs. To ease the process of
creating new programs from two parent programs, the
programs are written as trees. New programs are produced by
removing branches from one tree and inserting them into
another. This simple process ensures that the new program is
also a tree and so is also syntactically valid.
As an example, suppose we wish a genetic program to
calculate y = x2. Our population of programs might contain a
program which calculates y = 2x�x (see _gure 1) and another
which calculates y = xx x�x3 �x (_gure 2). Both are selected
from the population because they produce answers similar to
y = x2 (_gure 4), i.e. they are of high _tness. When a selected
branch (shown shaded) is moved from the father program and
inserted in the mother (displacing the existing branch, also
shown shaded) a new program is produced which may have
even high _tness. In this case the resulting program (_gure 3)
actually calculates y = x2 and so this program is the output of
our GP. The remainder of this paper describes genetic
algorithms in more detail, placing them in the context of
search techniques, then explains genetic programming, its
history, the _ve steps to GP, shows these steps being used in
our example and gives a taxonomy of current GP research
and applications. Current GP research and applications are
presented in some detail.

2.BACKGROUND ON GENETIC ALGORITHMS:

Observing that sexual reproduction in conjunction with
Darwinian natural selection based on reproduction and
survival of the fittest enables biological species to robustly
adapt to their environment, Professor John Holland of the
University of Michigan presented the pioneering
mathematical formulation of simulated evolution(“genetic
algorithms”) for fixed-length (typically binary) character
strings in Adaptation in Natural and Artificial Systems

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5359

(Holland 1975). In this work, Holland demonstrated that a
wide variety of different problems in adaptive systems are
susceptible to reformulation in genetic terms so that they can
potentially be solved by a highly parallel mathematical
“genetic algorithm” that simulates Darwinian evolutionary
processes and naturally occurring genetic operations on
chromosomes.
Genetic algorithms superficially seem to process only the
particular individual binary character strings actually present
in the current population. However, Holland’s 1975 work
focused attention on the fact that they actually also implicitly
process, in parallel, large amounts of useful information
concerning unseen Boolean hyperplanes (called schemata)
representing numerous additional similar individuals not
actually present in the current population. Thus, genetic
algorithms have a property of "intrinsic parallelism" which
enable them to create individual strings for the new
population in such a way that the hyperplanes representing
these unseen similar other individuals are all automatically
expected to be represented in proportion to the fitness of the
hyperplane relative to the average population fitness.
Moreover, this additional computation is accomplished
without any explicit computation or memory beyond the
population itself. As Schaffer (1987) points out, "Since there
are very many more than N hyperplanes represented in a
population of N strings, this constitutes the only known
example of the combinatorial explosion working to advantage
instead of disadvantage."
In addition, Holland established that the seemingly
unprepossessing genetic operation of crossover in
conjunction with the straight forward operation of fitness
proportionate reproduction causes the unseen hyperplanes
(schemata) to grow (and decay) from generation to generation
at rates that are mathematically near optimal. In particular,
Holland established that the genetic algorithm is a
mathematically near optimal approach to adaptation in the
sense that it maximizes overall expected payoff when the
adaptive process is viewed as a set of multi-armed slot
machine problems for allocating future trials in the search
space given currently available information. Holland’s l975
work also highlighted the relative unimportance of mutation
in the evolutionaryprocess. In this regard, it contrasts sharply
with numerous other efforts to solve adaptive systems
problem by merely Òsaving and mutating the bestÓ, such as
the 1966 Artificial Intelligence through Simulated Evolution
(Fogel et. al.) and other work using only asexual mutation .
The introduction of the classifier system (Holland 1986,
Holland et. al. 1986, Holland and Burks 1987, Holland and
Burks 1989) continued the trend towards increasing the
complexity of the structures undergoing adaptation. A
classifier system is a cognitive architecture into which the
genetic algorithm has been embedded so as to allow adaptive
modification of a population of string-based if-then rules
(whose condition and action parts are fixed length binary
strings). The classifier system architecture blends the
desirable features of if-then rules from expert systems, a more
precisely targeted allocation of credit to specific rules for

performance, and the creative power of the genetic algorithm.
In addition, embedding the genetic algorithm into the
classifier system architecture creates a computationally
complete system which can, for example, realize functions
such as the exclusive-or function. The exclusive-or function
was not realizable by early single layer linear perceptrons
(Minsky and Papert 1969) and, because the exclusive-or
function yields totally uninformative schemata (similarity
templates), it was not realizable with conventional linear
genetic algorithms using fixed length binary strings.

3.THE “GENETIC PROGRAMMING” PARADIGM:
In this section we describe the “genetic programming”
paradigm using hierarchical genetic algorithms by specifying
(1) the nature of the structures that undergo adaptation in this
paradigm, (2) the search space of structures, (3) the initial
structures, (4) the environment and fitness function which
evaluates the structures in their interaction with the
environment, (5) the operations that are performed to modify
the structures, (6) the state (memory) of the algorithmic
system at each point in time, (7) the method for terminating
the algorithm and identifying its output, and (8) the
parameters that control the process.
3.1. THE STRUCTURES UNDERGOING ADAPTATION
The structures that undergo adaptation in the genetic
programming paradigm are hierarchically structured
computer programs whose size, shape, and complexity can
dynamically change during the process. This is in contrast to
the one-dimensional linear strings (whether of fixed or
variable length) of characters (or other objects) cited
previously .
The set of possible structures that undergo adaptation in the
genetic programming paradigm is the set of all possible
composition of functions that can be composed recursively
from the available set of n functions F = {f1, f2, ... , fn} and
the available set of m terminals T = {a1, a2, ... , am}. Each
particular function f in F takes a specified number z(f) of
arguments b1, b2, ..., bz(f). Depending on the particular
problem of interest, the functions may be standard arithmetic
operations (such as addition, subtraction, multiplication, and
division), standard mathematical functions(such as SIN, EXP,
etc.), Boolean operations, domain-specific functions, logical
operators such as If-Then-Else, and iterative operators such
as Do-Until, etc. We assume that each function in the
function set of well-defined for any value in the range of any
of the functions. The "terminals" may be variable atomic
arguments, such as the state variables of a system; constant
atomic arguments, such as 0 and 1; and, in some cases, may
be other atomic entities such as functions with no arguments
(either because the argument is implicit or because the real
functionality of the function is the side effect of the function
on the state of the system).
Virtually any programming language is capable of expressing
and evaluating the compositions of functions described above
(e.g. PASCAL, FORTRAN, C, FORTH, LISP, etc.). We have
chosen the LISP programming language (first developed by

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5360

John McCarthy in the 1950Õs) for the work described in this
article for the following six reasons.
First, both programs and data have the same form in LISP.
This means that it is possible to genetically manipulate a
computer program and then immediately execute it (using the
EVAL function of LISP).
Second, the above-mentioned common form for both
programs and data in LISP is equivalent to the parse tree for
the computer program. In spite of their outwardly different
appearance and syntax, most "compiled" programming
languages convert, at the time of compilation, a given
program into a parse tree representing its underlying
composition of functions. In most programming languages,
this parse tree is not accessible to the programmer. As will be
seen, we need access to the parse tree because we want to
genetically manipulate the sub-parts of given computer
programs (i.e. sub-trees of the parse tree). LISP gives us
convenient access to this parse tree.
Third, LISP facilitates the programming of structures whose
size and shape changes dynamically
(rather than predetermined in advance). Moreover, LISP’s
dynamic storage allocation and garbage collection provides
administrative support for programming of dynamically
changing structures.
Fourth, LISP facilitates the handling of hierarchical
structures.
Fifth, the LISP programming language is reentrant.
Sixth, software environments with a rich collection of tools
are commercially available for the LISP programming
language.For these reasons, we have chosen the LISP
programming language for the work described in this paper.
In particular, we have chosen the Common LISP dialect of
LISP (Steele 1984). That is, the structures that undergo
adaptation in the genetic programming paradigm are LISP
computer programs (i.e. LISP symbolic expressions).
It is important to note that we did not choose the LISP
programming language for the work described in this article
because we intended to make any use of the list data structure
or the list manipulation functions unique or peculiar to the
LISP programming language. The general nature of the LISP
programming language can be illustrated by a simple
example. For example, (+ 1 2) is a LISP symbolic expression
(S-expression) that evaluates to 3. In this Sexpression, the
addition function (+) appears just inside the left-most
parenthesis of the Sexpression. This "prefix" form (e.g. Polish
notation) represents the application of a function (+) to its
arguments (1 and 2) and is a convenient way to express a
composition of functions. Thus, the S-expression (+ 1 (* 2 3))
is a composition of two functions (+ and *) that evaluates to
7. Similarly, the S-expression (+ 1 2 (IF (> TIME 10) 3 4))
demonstrates the “function” being applied to the variable
atom TIME and the constant atom 10. The sub-expression (>
TIME 10) evaluates to either T (True) or NIL (False) and this
value becomes the first argument of the ÒfunctionÓ IF. The
function IF returns either its second argument (i.e. the
constant atom 3) if its first argument is T and it returns its
third argument (i.e. the constant atom 4) if its first argument

is NIL. Thus, this S-expression evaluates to either 6 or 7
depending on the current value of TIME.
Now consider the Boolean exclusive-or function which can
be expressed in disjunctive normal form and represented as
the following LISP S-expression:
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). The set of
functions here is F = {AND, OR, NOT} and the set of
terminals is T = {D0, D1}. For our purposes here, terminals
can be viewed as functions requiring zero arguments in order
to be evaluated. Thus, we can combine the set of functions
and terminals into a combined set C = F È T = {AND, OR,
NOT, D0, D1} taking 2, 2, 1, 0, and 0 arguments,
respectively.
Any LISP S-expression can be graphically depicted as a
rooted point-labeled tree with ordered branches. The tree
corresponding to the LISP S-expression above for the
exclusive-or function is shown below:

In this graphical depiction, the 5 internal points of the tree are
labeled with functions (e.g. OR,AND, NOT, NOT, and
AND); the 4 external points (leaves) of the tree are labeled
with terminals (e.g. the variable atoms D0, D1, D0, and D1);
and the root of the tree is labeled with the function (i.e. OR)
appearing just inside the outermost left parenthesis of the
LISP S-expression. This tree is equivalent to the parse tree
which most compilers construct internally to represent a
given computer program.Note that the set of functions and
terminals being used in a particular problem should be
selected so 10 as to be capable of solving the problem (i.e.
some composition of the available functions and terminals
should yield a solution). Removing the function NOT from
the function set F above would, for example, create an
insufficient function set for expressing the Boolean
exclusive-or function.
3.2 . THE INITIAL STRUCTURES
Generation of the initial random population begins by
selecting one of the functions from the set F at random to be
the root of the tree. Whenever a point is labeled with a
function (that takes k arguments), then k lines are created to
radiate out from the point. Then, for each line so created, an
element is selected at random from the entire combined set C
to be the label for the endpoint of that line. If an terminal is
chosen to be the label for any point, the process is then
complete for that portion of the tree. If a function is chosen to
be the label for any such point, the process continues. The

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5361

probability distribution over the terminals and functions in
the combined set C and the number of arguments taken by
each function implicitly determines an average size for the
trees generated by this initial random generation process. In
this paper, this distribution is always a uniform random
probability distribution over the entire set C (with the
exception that the root of the tree must be a function). In
some problems, one might bias this initial random generation
process with a nonuniform distribution or by seeding
particular individuals into the population.
3.3. THE OPERATIONS THAT MODIFY THE
STRUCTURES
The two primary operations for modifying the structures
undergoing adaptation are Darwinian fitness proportionate
reproduction and crossover (recombination).

3.3.1 THE FITNESS PROPORTIONATE
REPRODUCTION OPERATION
The operation of fitness proportionate reproduction for the
genetic programming paradigm is the basic engine of
Darwinian reproduction and survival of the fittest. It operates
on only one parental S-expression and produces only one
offspring S-expression each time it is performed. That is, it is
an asexual operation. If f(si(t)) is the fitness of individual si in
the population at generation t, then, each time this operation
is performed, each individual in the population has a
probability of being copied into the next generation by the
operation of fitness proportionate reproduction.

Note that the parents remain in the population while this
operation is performed and therefore can potentially
participate repeatedly in this operation (and other operations)
during the current generation. That is, the selection of parents
is done with replacement (i.e. reselection) allowed.
3.3.2 THE CROSSOVER (RECOMBINATION)
OPERATION
The crossover (recombination) operation for the genetic
programming paradigm creates variation in the population by
producing offspring that combine traits from two parents. The
crossover operation starts with two parental S-expressions
and produces at least one offspring S-expression. That is, it is
a sexual operation. In this paper, two offspring will be
produced on each occasion that the crossover operation is
performed. In general, at least one parent is chosen from the
population with a probability equal to their respective
normalized fitness values. In this paper, both parents are so
chosen. The operation begins by randomly and independently
selecting one point in each parent using a probability
distribution. Note that the number of points in the two parents
typically are not equal. As will be seen, the crossover
operation is well-defined for any two S-expressions. That is,
for any two S-expressions and any two crossover points, the
resulting offspring are always valid LISP S-expressions.

Offspring consist of parts taken from each parent. The
"crossover fragment" for a particular parent is the rooted sub-
tree whose root is the crossover point for that parent and
where the sub-tree consists of the entire sub-tree lying below
the crossover point (i.e. more distant from the root of the
original tree). Viewed in terms of lists in LISP, the crossover
fragment is the sub-list starting at the crossover point.The
first offspring is produced by deleting the crossover fragment
of the first parent from the first parent and then impregnating
the crossover fragment of the second parent at the crossover
point of the first parent. In producing this first offspring the
first parent acts as the base parent (the female parent) and the
second parent acts as the impregnating parent (the male
parent). The second offspring is produced in a symmetric
manner.
For example, consider the two parental LISP S-expressions
below.

In terms of LISP S-expressions, the two parents are
 (OR (NOT D1) (AND D0 D1))
and
 (OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT
D1))
Assume that the points of both trees above are numbered in a
depth-first way starting at the left. Suppose that the second
point (out of the 6 points of the first parent) is selected as the
crossover point for the first parent and that the sixth point
(out of the 10 points of the second parent) isselected as the
crossover point of the second parent. The crossover points are
therefore the NOT function in the first parent and the AND
function in the second parent. Thus, the bold, underlined
portion of each parent above are the crossover fragments. The
two crossover fragments are shown below

The two offspring resulting from crossover are shown below:

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5362

Note that the first offspring above is a perfect solution for the
exclusive-or function, namely (OR (AND (NOT D0) (NOT
D1)) (AND D0 D1)). Note that because entire sub-trees are
swapped, this genetic crossover (recombination) operation
produces valid LISP S-expressions as offspring regardless of
which point is selected in either parent. If the root of one tree
happens to be selected as the crossover point, the crossover
operation will insert that entire parent into the second tree at
the crossover point of the second parent. In addition, the sub-
tree from the second parent will, in this case, then become the
second offspring. If the roots of two parents happen to be
chosen as crossover points, the crossover operation simply
degenerates to an instance of fitness proportionate
reproduction on those two parents. Note that if an individual
mates with itself, the two resulting offspring will generally be
different (if the crossover points selected are different).If a
terminal is located at the crossover point in precisely one
parent, then the sub-tree from the second parent is inserted at
the location of the terminal in the first parent and the terminal
from the first parent is inserted at the location of the sub-tree
in the second parent. In this case, the crossover operation
often has the effect of increasing the depth of one tree and
decreasing the depth of the second tree.If terminals are
located at both crossover points selected, the crossover
operation merely swaps these terminals from tree to tree.
3.4 THE STATE OF THE SYSTEM
The state of the hierarchical genetic algorithm system at any
generation consists only of the current population of
individuals in the population. There is no additional memory
or centralized
bookkeeping used in directing the adaptive process.
3.5 IDENTIFYING THE RESULTS AND TERMINATING
THE ALGORITHM
The solution produced by this algorithm at any given time
can be viewed as the entire population of disjunctive
alternatives (presumably with improved overall average
fitness) or, more commonly, as the single best individual in
the population at that time ("winner takes all"). The algorithm
can be terminated when either a specified total number of
generations have been run or when some performance
criterion is satisfied. In many problems, this performance
requirement for termination may be that the sum of the
distances reaches a value of zero. If a solution can be
recognized when it is encountered, the algorithm can be
terminated at that time and the single best individual can be
considered as the output of the algorithm.
3.6 THE PARAMETERS THAT CONTROL THE
ALGORITHM
The algorithm is controlled by various parameters, including
two major parameters and five minor parameters. The two
major parameters are the population size and the number of
generations to be run. A population size of 300 was used for
all problems described in section 4 with the exception of the
11-multiplexer problem. After the Boolean 6-multiplexer was
solved using the common population size of 300, we noted
that the search space of the next larger version of multiplexer
problem (i.e. a search space of size approximately 10616 for

the 11-multiplexer problem) would alone indicate using a
larger population size for this particular problem. An
especially large population size (i.e. 4000) was then chosen
for this particular problem in order to force down the number
of generations required to arrive at a solution so that it would
be practical to create a complete genealogical audit trail for
this problem. The number of generations was 51 (i.e. an
initial random generation and 50 subsequent generations).
Note if termination of the algorithm is under control of some
performance criterion (which was not the case in this paper),
this parameter merely provides an overall maximum number
of generations to be run.

4. SUMMARY OF HOW TO USE THE ALGORITHM:
In this section, we summarize the six major steps necessary
for using the "genetic programming" paradigm. These majors
steps involve determining (1) the set of terminals, (2) the set
of function, (3) the environmental cases, (4) the fitness
function, (5) the parameters for the run, and (6) the
termination criterion and method for identifying the solution.
4.1. IDENTIFYING THE SET OF TERMINALS
The first major step is to identify the set of terminals for the
problem. The set of terminals must, of course, be sufficient to
solve the problem. The step of of correctly identifying the
variables which have explanatory power for the problem at
hand is common to all science. For some problems, this
identification may be simple and straightforward. For
example, in the broom-balancing problem, the physics of the
problem dictate that the velocity of the cart, the angle of the
broom, and the angular velocity of the broom are the state
variables having explanatory power for the problem. In the
sequence induction problem, the sequence index II is the
single necessary variable atom (terminal). Needless to say,
the set of variables must be sufficient to express the solution
to the problem. For example, if one were given only the
diameter of each planet and the color of its surface, one
would not be able to discover Kepler’s Third Law for the
period of the planet.Constant atoms, if required at all, can
enter a problem in two ways. One way is to use the "constant
creation" procedure involving the ephemeral random constant
atom "R" described earlier.
In this event, the type of such random initial constants is
chosen to match the problem. For example, in a Boolean
domain, the constants are T and NIL; in an integral domain,
the constants are integers in a certain range; and in a real-
valued problem domain, the constants might be floating point
values in a certain range. The second way for constant atoms
to enter a problem is by explicitly including them. For
example, one might include p in a particular problem where
there is a possibility that this particular constant would be
useful. Of course, if one failed to include p in such a problem,
the genetic programming paradigm paradigm would probably
succeed in approximately creating it (albeit at a certain cost in
computational resources) in the manner described above.
4.2. IDENTIFYING THE FUNCTION SET
The second major step is to identify a sufficient set of
functions for the problem. For some problems, the

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5363

identification of the function set may be simple and
straightforward. For real-valued domains,the obvious
function set might be the set of 4 arithmetic operations,
namely, {+, -, *, %}.In a Boolean function learning domain,
for example, the function set {AND, OR, NOT, IF} might be
the choice since it is computationally complete and
convenient (in that the IF function often produces easily
understood logical expressions). If ones interests lie in the
domain of design of semiconductor logic layout, a function
set consisting only of the NAND function might be most
convenient. If the problem involves economics (where
growth rates and averages often play a role), the function set
might also include an exponential, logarithmic, and moving
average function in addition to the four basic arithmetic
operations. Similarly, the SIN and COS functions might be
useful additions to the function set for some problems.
Some functions may be added to the function set merely
because they might possibly facilitate a solution (even though
the same result could be obtained without them). For
example, one might include a squaring function in certain
problems (e.g. broom balancing) even though the same result
could be attained from the simple multiplication function
(albeit at a cost in computational resources). In any case, the
set of functions must be chosen so that any composition of
the available functions is valid for any value that any
available variable atom might assume. Thus, if division is to
be used, the division function must be modified so that
division by zero is well-defined. The result of a division by
zero could be defined to be zero, a very large constant, or a
new value such as the Common LISP keyword Ò:infinityÓ. If
one defined the result of a division by zero as the keyword
“infinity" then, each of the other functions in the function set
must be written so that it is well-defined if this ":infinity"
value happens to be one of its arguments. Similarly, if square
root is one of the available functions, it could either be a
specially defined real-valued version that takes the square
root of the absolute value of the argument (as was used in the
broom balancing problem) or it could be the Common LISP
complex-valued square root function SQRT (as was used in
the quadratic equation problem).
Common LISP is quite lenient as to the typing of variables;
however, it does not accommodate all of the combinations of
types that can arise when computer programs are randomly
generated and recombined via crossover. For example, if
logical functions are to be mixed with numerical functions,
then some kind of a real-valued logic should be used in lieu
of the normal logical functions.
For example, the greater than function GT used in the broom
balancing problem assumed the real value 1.0 if the
comparison relation was satisfied and the real value 0.0
otherwise.Note that the number of arguments must be
specified for each function. In some cases, this specification
is obvious or even mandatory (e.g. the Boolean NOT
function, the square root function). However, in some cases
(e.g. IF, multiplication), there is some latitude as to the
number of arguments. One might, for example, include a
particular function in the function set with differing numbers

of arguments. The IF function with two arguments, for
example is the IF-THEN function, whereas the IF function
with three arguments is the IF-THEN-ELSE function. The
multiplication function with three arguments might facilitate
the emergence of certain cross product terms although the
same result could be achieved with repeated multiplication
function with two arguments. It is often useful to include the
Common LISP PROGN (ÒprogramÓ) form with varying
number of arguments in a function set to act as a connective
between the unknown number of steps that may be needed to
solve the problem. The choice of the set of available
functions, of course, directly affects the character of the
solutions that can be attained. The set of available function
form a basis set for generating potential solutions. For
example, if one does symbolic regression on the absolute
value function on the interval [-1, +1] with a function set
containing the If-Then-Else function and subtraction, one
obtains a solution in the familiar form of a conditional test on
x that returns either x or -x. On other hand, if the function set
happens to contain COS, COS3 (i.e. cosine of 3 times the
argument), COS5 (i.e. cosine of 5 times the argument) instead
of the If-Then-Else function, one gets two or three terms of
the familiar Fourier series approximation to the absolute
value function. Similarly, we have seen cases where, when
the exponential function (or the SIGMA summation operator)
was not available in a problem for which the solution
required an exponential, the first one or two polynomial terms
of the Taylor series in the solution, in lieu of the missing ex.It
should be noted that the necessary preliminary selection of
appropriate functions and terminals is a common element of
machine learning paradigms. For example, in using
techniques in the ID3 family for inducing decision trees, the
necessary preliminary selection of the set of available
"attribute-testing" functions that appear at the nodes of the
tree (and the exclusion of other possible functions)
corresponds to the process of choosing of functions here.
Similarly, if one were approaching the problem of the 16-
puzzle using SOAR, the necessary preliminary selection of
the set of 24 operators for moving tiles in the puzzle
corresponds to the process of choosing of functions here.
Similarly, if one were approaching the problem of designing
a neural network to control an artificial ant, as Jefferson,
Collins et. al. successfully did (1990), the necessary
preliminary selection of the functions (turn-left, turn-right,
sense, move) corresponds to the process of choosing of
functions here.
Naturally, to the extent that the function set or terminal set
contains irrelevant or extraneous elements, the efficiency of
the discovery process will be reduced.
4.3. ESTABLISHING THE ENVIRONMENTAL CASES
The third major step is the construction of the environment
for the problem. In some problems, the nature of the
environment is obvious and straight-forward. For example, in
sequence induction,symbolic function identification
(symbolic regression), empirical discovery, and Boolean
function learning problems, the environment is simply the
value(s) of the independent variable(s) associated with a

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5364

certain sampling (or, perhaps, the entire set) of possible
values of the dependent variable(s).
In some problems (e.g. block-stacking, broom-balancing), the
environment is a set of “starting Condition” cases. In some
problems where the environment is large (e.g. block-
stacking), a random sampling or a structured representative
sampling can be used. For example, the environmental cases
for the symbolic regression problem, equation involving
problems, differential game problem, and broom balancing
problem were randomly selected floating points numbers in a
specified range.
4.4. IDENTIFYING THE FITNESS FUNCTION
The fourth major step is construction of the fitness function.
For many problems, the fitness function is the sum of the
distances (taken over all the environmental cases) between
the point in the range space returned by the S-expression for a
given set of arguments and the correct point in the range
space. One can use the sum of the distances or the square root
of the sum of the squares of the distances in this computation.
For some problems, the fitness function is not the value
actually returned by the individual Sexpression in the
population, but some number (e.g. elapsed time, total score,
cases handled, etc.) which is indirectly created by the
evaluation of the S-expression. For example, in the broom
balancing problem, raw fitness is the average time required
by a given S-expression to balance the broom. The goal is to
minimize the average time to balance the broom over the
environmental cases. In the "artificial ant" problem, the score
is the number of stones on the trail which the artificial ant
successfully traverses in the allowed time. Since the goal is to
maximize this score, the raw fitness is the maximum score
minus the score attained by a particular S-expression. In the
block stacking problem, the real functionality of the functions
in an individual S-expression in the population is the side
effect of the S-expression on the state of the system. Our
interest focuses on the number of environmental starting
condition cases which the S-expression correctly
handles.That is, the goal is to maximize the number of
correctly handled cases. Since raw fitness is to be defined so
that the raw fitness is closer to zero for better S-expressions,
raw fitness is the number of cases incorrectly handled. As we
saw in the second version of the block-stacking problem
(where both efficiency and correctness were sought) and in
the solution of differential equations (where both the solution
curve and satisfaction of initial conditions were sought), the
fitness function can incorporate both
correctness and a secondary factor.
It is important that the fitness function return a spectrum of
different values that differentiate the performance of
individuals in the population. As an extreme example, a
fitness function that returns only two values (say, a 1 for a
solution and a 0 otherwise) provides insufficient information
for guiding guide an adaptive process. Any solution that is
discovered with such a fitness function is, then, essentially an
accident. An inappropriate selection of the function set in
relation to the number of environment cases for a given
problem can create the same situation. For example, if the

Boolean function OR is in the function set for the exclusive-
or problem, this function alone satisfies three of the four
environment cases. Since the initial random population of
individuals will almost certainly numerous S-expressions
equivalent to the OR function, we are effectively left with
only two distinguishing levels of the fitness (i.e. 4 for a
solution and 3 otherwise).
4.5. SELECTING THE PARAMETERS FOR THE RUNS
The fifth major step is the selection of the major and minor
parameters of the algorithm and a decision on whether to use
any of the four secondary genetic operations .The selection of
the population size is the most important choice. The
population size must be chosen with the complexity of the
problem in mind. In general, the larger the population, the
better (Goldberg 1989). But, the improvement due to a larger
population may not be proportional to the increased
computational resources required. Some work has been done
on the theory of how to optimally select the population size
for string-based genetic algorithms (Goldberg l989);
however, we can offer no corresponding theoretical basis for
this tradeoff for hierarchical genetic algorithms at this time.
Thus, selection of the population size lies in a category of
external decisions that must be made by the user. In that
respect, this decision is similar to the selection of the number
of processing elements in neural nets, the selection of the
string size for the condition parts of classifier system rules,
and the selection of testing functions in ID3 type inductive
systems. The problem of optimally allocating computer
resources (particularly, population size and number of
generations) over runs, the problem of optimally selecting
other key parameters (such as percentage of individuals to
participate in crossover and other genetic operations), and the
problem of optimally parallelizing runs (e.g. cross migration
versus independent isolated runs) are unsolved problems for
all types of genetic algorithms.
4.6. TERMINATION AND SOLUTION
IDENTIFICATION
Finally, the sixth major step is the selection of a termination
criterion and solution identification procedure. The approach
to termination depends on the problem. In many cases, the
termination criterion may be implicitly selected by merely
selecting a fixed number of generations for running the
algorithm. For many problems, one can recognize a solution
to the problem when one sees it (e.g. problems where the sum
of differences becomes zero or acceptably close to zero).
However,for some problems (such as time-optimal control
strategy problems where no analytic solution is known), one
cannot necessarily recognize a solution when one sees it
(although one can recognize that the current result is better
than any previous result or that the current solution is in the
neighborhood of some estimate of the solution). The solution
identification procedure used in this paper is to identify the
best single individual of some generation where the
termination criterion is satisfied as the solution to the
problem (“winner takes all”).
There are numerous opportunities to use domain specific
heuristic knowledge in connection with the genetic

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5365

programming paradigm. Many of these areas have been
studied in connection with string-based genetic algorithms
(Grefenstette 1987b). First, it may be useful to include
domain specific heuristic knowledge in creating the initial
random population. For example, one might include sub-
programs believed to be useful for solving the problem at
hand in the initial random population. Or, one might use a
probability distribution other than the uniform distribution to
initially select the functions and terminals when the initial
random individuals are randomly generated. Secondly,
domain specific heuristic knowledge may be helpful in over-
selecting or under-selecting certain points in the computer
programs for the crossover operation. This may even include
protecting certain points from selection for crossover under
certain circumstances or requiring certain points to be
selected for crossover under certain circumstances. Thirdly,
domain specific heuristic knowledge may be useful in
varying the parameters of the run based on information
gained during the run. Fourth, domain specific heuristic
knowledge can be used in the selection of the set of available
functions and terminals for the problem so that this set is not
merely minimally sufficient to solve the problem, but so that
the set of available functions and terminals actively facilitates
solution of the problem.
The extent to which one uses such domain specific heuristics
is, of course, dependent on whether the primary objective is
to solve a specific problem at hand or to study the process in
the purest theoretical form. We have chosen not to use such
domain specific heuristics in the work reported here.

5. ADDITIONAL OPERATIONS
In addition to the two primary genetic operations of fitness
proportionate reproduction and crossover, there are four
secondary operations for modifying the structures undergoing
adaptation. They are mutation, permutation, editing, and the
“define building block” operation
5.1. THE MUTATION OPERATION
The mutation operation provides a means for introducing
small random mutations into the population. The mutation
operation is an asexual operation in that it operates on only
one parental S-expression. The individual is selected
proportional to normalized fitness. The result of this
operation is one offspring S-expression. The mutation
operation selects a point of the LISP S-expression at random.
The point can be an internal (function) or external (terminal)
point of the tree. This operation removes whatever is
currently at the selected point and inserts a randomly
generated subtree at the randomly selected point of a given
tree. This operation is controlled by a parameter which
specifies the maximum depth for the newly created and
inserted sub-tree. A special case of this operation involves
inserting only a single terminal (i.e. a sub-tree of depth 0) at a
randomly selected point of the tree. For example, in the figure
below, the third point of the S-expression shown on the left
below was selected as the mutation point and the sub-
expression (NOT D1) was randomly generated and inserted at

that point to produce the S-expression shown on the right
below.

The mutation operation potentially can be beneficial in
reintroducing diversity in a population that may be tending to
prematurely converge. Our experience has been that no run
using only mutation and fitness proportionate reproduction
(i.e. no crossover) ever produced a solution to any problem
(although such solutions are theoretically possible given
enough time). In other words, “mutating and saving the best”
does not work any better for hierarchical genetic algorithms
than it does for string-based genetic algorithms. This negative
conclusion as to the relative unimportance of the mutation
operation is similar to the conclusions reached by most
research work on string-based genetic algorithms (Holland
1975, Goldberg 1989).
5.2. THE PERMUTATION OPERATION
The permutation operation is both an extension of the
inversion operation for string-based genetic algorithms to the
domain of hierarchical genetic algorithms and a
generalization of the inversion operation. The permutation
operation is an asexual operation in that it operates on only
one parental S-expression. The individual is selected in a
manner proportional to normalized fitness. The result of this
operation is one offspring S-expression. The permutation
operation selects a function (internal) point of the LISP S-
expression at random. If the function at the selected point has
k arguments, a random permutation is selected at random
from the set of k! possible permutations. Then the arguments
of the function at the selected point are permuted in
accordance with the random permutation. Notice that if the
function at the selected point happens to be commutative,
there is no immediate effect from the permutation operation
on the value returned by the S-expression. The inversion
operation for strings reorders the order of characters found
between two selected points of a single individual by
reversing the order of the characters between the two selected
points. The operation described here allows any one of k!
possible permutations to occur (of which the reversal is but
one).
The permutation operation can potentially bring closer
together elements of a relatively high fitness individual so
that they are less subject to later disruption due to crossover.
However, like the mutation operation, our experience, after
including the permutation operation in numerous runs of
various problems described herein, is that the benefits of this
operation are purely potential and have yet to be observed.

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5366

5.3. THE EDITING OPERATION
The editing operation provides a means to edit (and simplify)
S-expressions as the algorithm is running.The editing
operation is applied after the new population is created
through the action of the other operations. The editing
operation is an asexual operation in that it operates on only
one parental Sexpression. The result of this operation is one
offspring S-expression. All of the previously described
operations operate on individuals selected in proportion to
fitness. The editing operation is the exception. The editing
operation, if it is used at all, is applied to every individual S-
expression in the population.
The editing operation recursively applies a pre-established set
of editing rules to each S-expression in the population. First,
in all problem domains, if any sub-expression has only
constant atoms as arguments, the editing operation will
evaluate that sub-expression and replace it with the value
obtained. In addition, the editing operation applies particular
sets of rules that apply to various problem domains, including
rules for numeric domains, rules for Boolean domains, etc. In
numeric problem domains, for example, the set of editing
rules includes rules that insert zero whenever a sub-
expression is subtracted from an identical sub-expression and
also includes a rule that inserts a zero whenever a sub-
expression is multiplied by zero. In Boolean problem
domains, the set of editing rules includes a rule that inserts X
in place of (AND X X), (OR X X), or (NOT (NOT X)), etc.
The editing operation is controlled by a frequency parameter
which specifies whether it is applied on every generation or
merely a certain number of the generations.
The main reason for the editing operation is convenience. It
simplifies S-expressions and saves computer resources. It
also appears to improve overall performance slightly. The
editing operation apparently improves performance by
reducing the vulnerability of an S-expression to disruption
due to crossover at points within a potentially collapsible,
non-parsimonious sub-expression. Crossover at such points
typically leads to counter-productive results. For example,
consider the sub-expression (NOT (NOT X)). This sub-
expression could be simplified to the more parsimonious sub-
expression X. In this example, a crossover in the middle of
this sub-expression would usually produce exactly the
opposite Boolean result as the expression as a whole. In this
example, the editing operation would prevent that kind of
crossover from occurring by condensing the sub-expression
to the single term X.
5.4. THE ÒDEFINE BUILDING BLOCKÓ OPERATION
The “define building block” operation is a means for
automatically identifying potentially useful “building blocks”
while the algorithm is running. The “define building block”
operation is an asexual operation in that it operates on only
one parental S-expression. The individual is selected
proportional to normalized fitness. The operation selects a
function (internal) point of the LISP S-expression at random.
The result of this operation is one offspring S-expression and
one new definition. The “define building block” operation
works by defining a new function and by replacing the sub-

tree located at the chosen point by a call to the newly defined
function. The newly defined function has no arguments. The
body of the newly defined function is the sub-tree located at
the chosen point. The newly defined functions are named
DF0, DF1, DF2, DF3, ... as they are created.
For the first occasion when a new function is defined on a
given run, Ò(DF0)Ó is inserted at the point selected in the
LISP S-expression. The newly defined function is then
compiled. The function set of the problem is then augmented
to include the new function. Thus, if mutation is being used,
an arbitrary new sub-tree grown at the selected point has the
potential to include the newly defined function.
For example, consider the simple LISP S-expression (+ A (*
B C)) shown, in graphical form, below:

Suppose that the third point (i.e. the multiplication) is
selected as the point for applying the "define building block"
operation. Then, the subtree for (* B C) is replaced by a call
to the new "defined function" DFO producing the new S-
expression (+ A (DF0)) shown, in graphical form, below:

This new tree has the call (DF0) in lieu of the sub-tree (* B
C).
At the same time, the function DFO was created. If this new
"defined function" were written in LISP, it would be written
as shown below:
 (defun DF0 ()
 (* B C)
)
In implementing this operation on the computer, the sub-tree
calling for the multiplication of B and C is first defined and
then compiled during the execution of the overall run. The
LISP programming language facilitates this "define building
block" operation in two ways. First, the form of data and
program are the same in LISP and therefore a program can be
altered by merely performing operations on it as if it were
data. Secondly, it is possible to compile a new function
during the execution of an overall run and then execute it.
The effect of this replacement is that the selected sub-tree is
no longer subject to the potentially disruptive effects of
crossover because it is now an indivisible single point. In
effect, the newly defined indivisible function is a potential
Òbuilding blockÓ for future generations and may proliferate
in the population in later generations based on fitness.

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5367

Note that the original parent S-expression is unchanged by
the operation. Moreover, since the selection of the parental S-
expression is in proportion to fitness, the original unaltered
parental S-ex-pression may participate in additional genetic
operations during the current generation, including
replication (fitness proportionate reproduction), crossover
(recombination), or even another “define building block”
operation.

6. ROBUSTNESS:
The existence and nurturing of a population of disjunctive
alternative solutions to a problem allows the genetic
programming paradigm to perform effectively even when the
environment changes. To demonstrate this, the environment
for generations 0 through 9 is the quadratic polynomial x2 +x
+2; however, at generation 10, the environment abruptly
changes to the cubic polynomial x3 + x2 +2x +1; and, at
generation 20, it changes again to a new quadratic polynomial
x2 +2x + 1. A perfect- scoring quadratic polynomial for the
first environment was created by generation 3. Normalized
average population fitness stabilized in the neighborhood 0.5
for generations 3 through 9 (with genetic diversity
maintained). Predictably, the fitness level abruptly dropped to
virtually 0 for generation 10 and 11 when the environment
changed. Nonetheless, fitness increased for generation 12 and
stabilized in the neighborhood of 0.7 for generations 13 to 19
(after creation of a perfect-scoring cubic polynomial). The
fitness level again abruptly dropped to virtually 0 for
generation 20 when the environment again changed.
However, by generation 22, a fitness level again stabilized in
the neighborhood of 0.7 after creation of a new perfect-
scoring quadratic polynomial.

CONCLUSION:
We have demonstrated how a number of seemingly different
problems from artificial intelligence, symbolic processing,
and machine learning can be reformulated as problems that
require discovery of a computer program that produces a
desired output for particular inputs. These problems include
function learning, robotic planning, sequence induction,
symbolic function identification, symbolic regression,
symbolic "data to function" integration, symbolic "data to
function" differentiation, solving differential equations,
solving integral equations, finding inverse functions, solving
general equations for numerical values, empirical discovery,
concept formation, automatic programming, pattern
recognition, optimal control, game-playing, multiple
regression, and simultaneous architectural design and training
of a neural network. We have then shown how such problems

can be solved by genetically breeding computer programs
using the genetic programming paradigm.

REFERENCES:
1. Anderson, Charles W. Learning to control and inverted pendulum

using neural networks. IEEE Control Systems Magazine. 9(3).
Pages 3l-37. April l989.

2. Axelrod, R. The evolution of strategies in the iterated prisonerÕs
dilemma. In Davis, Lawrence (editor) Genetic Algorithms and
Simulated Annealing London: Pittman l987.

3. Barto, A. G., Anandan, P., and Anderson, C. W. Cooperativity in
networks of pattern recognizing stochastic learning automata.In
Narendra,K.S. Adaptive and Learning Systems. New York:
Plenum 1985.

4. Booker, Lashon Improving search in genetic algorithms. In Davis,
Lawrence (editor) Genetic Algorithms and Simulated Annealing
London: Pittman l987.

5. Booker, Lashon, Goldberg, David E., and Holland, John H.
Classifier systems and genetic algorithms. Artificial Intelligence
40 (1989) 235-282.

6. Citibank, N. A. CITIBASE: Citibank Economic Database
(Machine Readable Magnetic Data File), 1946-Present. New
York: Citibank N.A. 1989.

7. Cramer, Nichael Lynn. A representation for the adaptive
generation of simple sequential programs.Proceedings of an
International Conference on Genetic Algorithms and Their
Applications.Hillsdale, NJ: Lawrence Erlbaum Associates l985.

8. Davis, Lawrence (editor) Genetic Algorithms and Simulated
Annealing London: Pittman l987.

9. Davis, Lawrence and Steenstrup, M. Genetic algorithms and
simulated annealing: An overview. In

10. Davis, Lawrence (editor) Genetic Algorithms and Simulated
Annealing London: Pittman l987.

11. Dawkins, Richard. The Blind Watchmaker. New York: W. W.
Norton 1987.

12. De Jong, Kenneth A. Genetic algorithms: A l0 year perspective.
Proceedings of an International Conference on Genetic
Algorithms and Their Applications. Hillsdale, NJ: Lawrence
ErlbaumAssociates l985.

13. De Jong, Kenneth A. On using genetic algorithms to search
program spaces. Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic
Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates l987.

14. De Jong, Kenneth A. Learning with genetic algorithms: an
overview. Machine Learning, 3(2),121-138, 1988. Doan, Thomas
A. User Manual for RATS - Regression Analysis of Time Series.
Evanston, IL: VAR Econometrics, Inc. 1989 Fogel, L. J., Owens,
A. J. and Walsh, M. J. Artificial Intelligence through Simulated
Evolution. New York: John Wiley 1966.

15. Friedberg, R. M. A learning machine: Part I. IBM Journal of
Research and Development, 2(1), 2-13, l958. Friedberg, R. M.
Dunham, B. and North, J. H. A learning machine: Part II. IBM
Journal of Research and Development, 3(3), 282-287, l959.

16. Fujiki, Cory and Dickinson, John. Using the genetic algorithm to
generate LISP source code to solve the prisoner’s dilemma. In
Grefenstette, John J.(editor). Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference
on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum
Associates l987.

17. Fujiki, Cory. An Evaluation of Holland’s Genetic Algorithm
Applied to a Program Generator.

18. Master of Science Thesis, Department of Computer Science,
Moscow, ID: University of Idaho.

Shresth Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5359-5368

www.ijcsit.com 5368

